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Some aspects of the radial filling of a finite rotating cylinder are considered in the 
limit of a small Ekman number E. Three main cases are distinguished by the value 
of 7F, the ratio of filling and spin-up times. When 7F 4 1 the effect of the Ekman layers 
is unimportant and new fluid accumulates behind that already Contained by an 
essentially radial flux. For 7F - 1 the Ekman layers are active and entering fluid is 
added both ahead and behind the initially contained fluid core, which undergoes a 
process similar to spin-up with the notable difference that here the Ekman layers are 
non-divergent. I n  both cases the Rossby number e is O(1).  When 7F 9 1 ,  e is small 
and the Ekman layers control the (quasi-steady) filling. The new fluid is then 
transported through boundary layers and spread on the moving front from the inside 
throughout an I& layer imbedded in a weak l$ layer. 

1. Introduction 
The radial filling of a rotating container is of interest in separation and propulsion 

processes. The closely related steady-state sourcesink flow has been extensively 
studied (e.g. Lewellen 1965; Barcilon 1966; Hide 1968; Bennetts & Hocking 1973; 
Bennetts & Jackson 1974; Conlisk & Walker 1981); the radial filling process has been 
considered by Hocking (1970), who analysed a rapid process in which the Ekman 
layers’ contribution is insignificant. 

This paper examines the function of the Ekman layers in the filling process; 
especially the slow filling a t  a small Rossby number, which is dominated by these 
layers. The equations of motion for the inviscid interior are formulated in $2.  Their 
subsequent solution clarifies general features of the process under investigation. In 
particular, i t  points out the differences between ‘rapid ’, ‘ moderate ’ and ‘ slow ’ filling 
corresponding to  small, 0 ( 1 )  and large values of 7F (the ratio of filling and spin-up 
times) and establishes the relation between the Rossby number of the flow e and 
7F. The analysis of the flow field for small E is extended in $3  to account for ‘vertical’ 
shear layers on the liquid-gas (or vacuum) interface, which are essential to the 
process. 

2. Analysis of general features 
Consider an annulus of height H*, inner and outer radii r: and r g ,  which rotates 

with angular velocity Q* around its axis of symmetry (figure 1) .  (The upper asterisk 
designates dimensional variables.) An incompressible fluid initially occupies the 
annular region a* < r* < rT, and is in solid rotation. Starting a t  t* = 0 a volume flux 
of constant rate - &* is applied uniformly on the outer permeable wall. The fluid that 
enters the container has the azimuthal velocity of the outer wall. It is assumed that 
Q*2rF is large enough for gravitational effects to  be negligible and for the Ekman 
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Q* 

FIGURE 1 .  Schematic section of the rotating container filling 
through the outer wall. Initially rF = a. 

number E = v*/SZ*r;S2 to be small (where v* is the kinematic viscosity). The object 
is to describe the time-dependent fluid motion for t* > 0. 

The methods used are essentially similar to those employed in the study of the 
nonlinear spin-up problem (Wedemeyer 1964; Greenspan 1968; a topic reviewed by 
Benton & Clark 1974). The flow field consists of thin ‘horizontal’ boundary layers 
of Ekman type and a nearly inviscid interior motion. We shall consider in detail only 
the solution in the interior. Let U ,  V and W be the radial, azimuthal and axial interior 
velocity components in an inertial cylindrical coordinate system and scale the 
variables by the length r z ,  time Q*-l and velocity Q*r;S. Since the volume flux in 
the Ekman layers is O(E*), the velocity components in the interior are assumed to 
be expressible as an  asymptotic series in powers of Ei. Upon substitution in the 
equations of motion, the leading terms of U and V in this expansion are found to  
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be independent of the axial coordinate z (Greenspan 1968, 5 3.7). Consequently, the 
azimuthal momentum equation is 

a i a  
- V ( r , t ) + U ( r , t ) - - r B ( r , t )  = 0. 
at r ar 

The main matching condition of the interior and boundary-layer flows arises from 
the conservation of volume flux: 

2&+ j" 27crU(r, t )  dz = -&. 
0 

Here Q is the volume flow rate in one Ekman layer, which will be approximated by 
w 

Q = - n ~ h f V ( r , t ) - r ] .  (2.3) 

This formula for the Ekman-layer 'suction', introduced by Wedemeyer (1964) (who 
actually used a slightly different coefficient of proportionality) can be regarded as 
a result of a momentum-integral analysis. I ts  validity can be proven for small- 
Rossby-number flows (i.e. V / r +  l) ,  but in general its applicability is formally 
restricted to special circumstances (see e.g. Hyun et al. 1983, where other important 
references are given). However, the use of (2.3) is vindicated by its simplicity, and 
a great deal of evidence that this approximation indeed reproduces the main features 
of the Ekman-layer suction in quite general flows. The utility of (2.3) is obvious in 
combining (2.1)-(2.3), the result of which is an equation for V alone: 

~ z + [ ~ t ( ~ - r ) - - ] ( - - r V )  & l a  = 0. 
2nr rar  

Upon introducing the scaled spin-up time7 = tl&/ H ,  the specific angular momentum 
(or circulation) r = r V ,  and q = &/27cE;, (2.4) can be written as 

It can be anticipated that the magnitude of q has important implications for the 
flow-field properties. However, a t  this stage q is considered to be an 0(1) parameter. 
The initial and boundary conditions for r are 

The solution of (2.5)-(2.6) by the method of characteristics yields 

r= r: on r2 = r$-q(I-e-") (a  < r* < l ) ,  ( 2 . 7 ~ )  

r = 1 on r2 = 1 - ~ [ 1  -e-Z(T--Y) ] (7 2 y 20). (2.7 b )  

Here r* and y are parameters which can be eliminated to obtain an explicit formula 
for T(r, t ) ,  namely 

T(r ,7 )  = r2+Q(l-e-27) (Ri(7) < r < R,,(T)), (2.8a) 

r= 1 (Ro(7) < r < l ) ,  

R:(7) = 1 - Q ( 1  -e-2r), 

R37) = a2 - 4( 1 - e-2T). 

(2.8b) 
where 
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Using (2.8) and (2.2)-(2.3), the radial velocity is found to be 

h? 
U ( r , 7 )  = --[q-(l-r2)] 

Hr 
(Ro(7) < r < 1). 

The axial velocity is determined from mass continuity : 

w = 0 (R,(t) < r < Jlo(7)), 
(2.10) 

By simple time integration of (2.9) we find that Ri(7) and Ro(7) are the loci of the 
inner and outer rings of the initial fluid core. Hence the interesting consequence of 
(2.10) is that the Ekman layers adjacent to this core are non-divergent. This means 
that the new fluid will accumulate ahead of and behind the (moving) bulk of whatever 
fluid is initially present. Fluid cannot be added to the original mass. However, the 
foregoing solution does not describe the motion of all the fluid in the interior. Since 
the locus of the fluid front (in fact, a gas-liquid interface, which is assumed to be 
cylindrical) is 

rg(7) = u2 - 247, (2.11) 

i t  becomes clear that  the flow in the region rF < r ,< Ri requires a special analysis. The 
width of this region incrcases with time because 

R:(7)-rg(T) = q(27-eP2'). 
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FIGURE 3. Typical solution (regions I and H )  for a cylinder filled at, Q = 0.3.  inner radius r ,  = 0.2.  
front initially at a = 0.6. ( A  sink on the inner wall is assumed for 7 > 7F.) ( a )  Motion of fluid rings 
(conserving angular montentum) arid of the front. (6) Surplus of local azimuthal velocity (over solid 
rotation) vs. r at different times. 

Thus the interior flow can be divided in three main regions shown in figure 2 : region 
I, Ri(7) < r d R,(T), of initially contained fluid is imbedded in regions B, RO(7) < r < 1 ,  
and A, rF(7)  < r < R, (T) ,  of new fluid. 

Equations (2.9) a id  (2.10) show that region B contains fluid passing directly 
through the interior by a radial flux, while the fluid added to region A arrives via 
the Ekman layers. Region 1 has a passive role, and in the particular case of an initially 
empty container (i.e. a = 1) it reduces to the thin interface between the fluid particles 
filled through the interior and through the Ekman layers. 

A typical solution for regions 1 and €3 is presentcd in figure 3. We note that in order 
to validate this solution for T > T~ ( T ~  is the filling time, when the front reaches the 
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inner radius) an appropriate sink should be assumed on the inner boundary. 
Otherwise, the throughflow stops at 7 = T~ and a spin-down process (not discussed 
here) takes place. 

Viscous forces, which are neglected in this analysis, are expected to dominate the 
flow around the boundaries of regions I, A and B. In particular, according to (2.8) 
the derivative of Vis discontinuous a t  Ro(7) (see also figure 3 b ) ,  and the corresponding 
free shear layer is discussed in the Appendix. 

The physical interpretation of these results is as follows. A ring of fluid initially 
a t  r = r* is convected inwards and conserves its angular momentum. Because the fluid 
is transported to smaller radii, the azimuthal velocity will be everywhere larger than 
that of rigid rotation. The Ekman boundary layers, which are required to adjust the 
azimuthal velocity of the fluid to the rigid rotation of the ‘horizontal ’ walls, give rise 
to  a radially inward volume flux. Fluid is eventually expelled from thcse boundary 
layers into region A. The space between the last ring (originally a t  r = 1) and the 
outer wall (region B in figure 2) is filled with fluid convected from the wall with r = 1 .  
The inward speed of the rings in region I, which is initially O ( a / H ) ,  decays 
exponentially on the spin-up timescale. The final position a t  7 = 00 of a ring originally 
a t  r* is 

and the azimuthal velocity in this case is then 

r2 = r i - q  for any r * ,  a < r* < 1; (2.12) 

(2.13) 

This value of V ( r )  corresponds to the steady-state solution of a source-sink flow, 
in which the volume flux is transported entirely by the Ekman layers. Thus in the 
spin-up time every ring of initially contained fluid moves to the position where, owing 
to angular-momentum conservation, it,s new azimuthal velocity is that  required for 
the entire imposed volume flux -&* to be pumped through the Ekman boundary 
layers. This is similar to the classical spin-up process, with the notable difference that 
here no fluid is sucked into the Ekman boundary layers, cf. (2.10). (On the other hand, 
since the filling process may be fairly rapid, some care is required in the physical 
interpretation of (2.12) and (2.13).) 

For further investigation i t  is convenient to  distinguish between ‘ rapid ’, ‘ moderate ’ 
and ‘ slow ’ filling corresponding to T~ <. 1, T~ - 1 and T~ & 1, where T~ is the filling time 
on the spin-up scale 

1 
V ( r )  = r+e- 

r 
(a2-q < r z  < 1 --a). 

(2.14) 

In  the case of ‘rapid’ filling, a Taylor-series expansion of (2.8) and (2.11) yields 
rF-Ri = O(T;) and 

27 
V ( r , T ) - r  = 4- (7 < T~ 4 l ) ,  (2.15) 

r 

which, in view of (2.3), shows Q/Q = O ( T ~ ) .  We conclude that the contribution ofthe 
Ekman layers is negligible and the added fluid accumulates mainly behind that 
already inside. The flow field consists of regions I and B (figure 2 ) ;  region A is 
negligibly small. This is exactly the limit studied by Hocking (1970). 

The departure of the angular velocity from rigid-body rotation, T I T 2 -  1 ,  a t  T = T~ 

is an estimate of the importance of nonlinear effects in the filling process. The maximal 
deviation available from the foregoing solution is a t  t = R i ( ~ F ) ,  and this particular 

Y 
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value of T / r 2 - 1  is defined as the Rossby number e of the filling process under 
consideration. This value of E is indeed representative for the entire flow field. Upon 
elimination of q from (2.8) and (2.9), we obtain 

where 

Hence 

(2.16) 

(2.17) 

It is now obvious that 6 is small only for 7F $ 1 (we exclude the filling of a narrow 
gap, a-rI  4 1 ,  from this analysis). Consequently, the rapid and moderate filling 
processes are dominated by nonlinear effects, while the slow filling is controlled by 
the Coriolis (linear) terms. Since for moderate filling times both nonlinear and 
Ekman-layer contributions are important, this is the most difficult case for analysis. 

We shall now focus attention on small-e flows. The first implication, in view of 
(2.17), is7F = O(e-'). This leads to the interesting conclusion that the flow field, which 
varies on the spin-up timescale 7 - 1, is quasi-steady during the filling process. 
Secondly, elimination of 7 F  from (2.14) and (2.17) gives q = O ( E ) .  Using this result 
in (2.12), we find that, to leading order in E ,  the fluid in the interior core (region I 
in figure 2) is not displaced during the filling. Moreover, the volume of fluid added 
to the outer periphery of this core, in region B, is also O(e) .  This indicates that the 
new fluid is entirely transported by the Ekman layers to the radial position rF of the 
inner front, where it spreads axially and is added to the core from the inside. The 
details of this flow are discussed in $3. 

3. The slow-filling solution 
Since the motion is quasi-steady on the spin-up scale, its main part is described 

by the well-known solution of steady source-sink flow. Thus, referring to figure 4, 
@ and vertical shear layers are formed in the source region a t  r = 1, the entire 
mass flux is transported by non-divergent Ekman layers and the azimuthal velocity 
in the inviscid core is a potential vortex in a system rotating with O* (Hide 1968; 
Greenspan 1968). If the Rossby number is larger than i$ the thickness of the layer 
a t  r = 1 increases, but the motion in the core is unaffected. However, the 'sink' of 
the abovementioned solution is replaced here by the thin viscous region of the moving 
front, whose structure is considered now. 

The previous scaling for lengths and time is retained and u, v, w are the radial, 
azimuthal and axial velocity components in the rotating frame scaled by eQ*r,*, 
where, as suggested by (2.14) and (2.17),  

Note that the scaled volume flux -&  is equal to Ei in this case. 
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Front 

Inviscid 
core 

u = 0 ,  w = o  

Q* H 

Non-divergent Source region 
Ekman layer I 

FIGITHE 4. Sehrmatic. V I V W  of t tie quasi-stead) slow-filling configuration. 

The analysis is simplified with thc transformation 

x = r - r F ,  u = u-uF,  ( 3 . 2 )  

where rF and uF are the radial position and velocity of the front. The former variable 
is given by (2.11), and consequently uF = - E i / r F  H .  

The equations of motion for the thin viscous layer at the interface arc: 

au aw -+- = 0, 
ax 22 

(3.3) 

(3.4) 

( 3 . 5 )  

(3.6) 

where p is the reduced pressure. Thc front is considered to be a shcar-free cylindrical 
surface, and this implies the boundary conditions 

(3 .7)  

The solutitin of (3.3)-(3.6) is also required to match the inviscid interior whew 

In addition. the Ekman compatibility condition, similar to that given by ( 2 . 3 ) .  is to 
be satisfied at z = 0, H .  

It can bc anticipated that thc flow involvc~s ‘ vc,rtical’ shcar layclrs. The frcr. surfacc 
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requires a weak l8 layer, where the v-correction is O(h*), but the more-significant 
structure is the layer. 

To leading order. the solution in these layers is 

where 

(3.11) 

Since the solution of this moving viscous layer is independent of the details in the 
source region, it can be directly applied for different filling methods. Moreover, it is 
obvious that time variation of &* on the filling timescale is implicitly incorporated 
in these results. 

4. Concluding remarks 
Three cases of radial filling of a rotating axisymmetric container were distinguished 

on the basis of the parameter 7F, which is essentially the ratio of the filling and the 
spin-uptimes. I n  ‘rapid’ filling (7F 4 1 )  theEkman-layerscontributionisunimportant, 
and rings of new fluid accumulate a t  the outer periphery of the fluid already present 
in the container, pushing i t  inwards. This case was investigated by Hocking (1970). 
I n  ‘moderate’ filling (7F = O(1)) a significant part of the entering fluid is transported 
to the other side of the core region by the Ekman layers while the remainder 
accumulates as before. This core is convected inwards as a bulk. Although the 
adjacent Ekman layers are non-divergent, this motion is similar in many aspects to 
the spin-up process. The motion of the new fluid transported ahead of this bulk 
remains open to  future investigation. 

The ‘slow’ filling (7F 9 1) is the only case in which the Rossby number is small. The 
flow is controlled by the Ekman layers and is quasi-steady (on the spin-up scale). The 
entering fluid is transported by the Ekman layers to the front region, where i t  spreads 
through an I8 layer imbedded in a weak ,@ layer. I n  this case, filling is an inside-out 
process. 

This research was partially supported by National Science Foundation Contract 
MCS-8213987. 



106 M .  Ungarish and H .  P. Greenspan 

Appendix. The viscous layer at Ro(7) 

then the equation corresponding to (2 .5)  is 
If the radial shear term in the azimuthal momentum equation (2.1) is not neglected, 

where 
7 = r2 .  

Since the viscous layer develops around 

we define the new variables 

where 

0 = l-e--2T (A 5) 

such that 5 = 0 is the centre of the viscous region and 0 varies from 0 to 1 as 7 changes 
from 0 to 00. Moreover, because r = 1 a t  7,,(7), it  is convenient to introduce 

y = r - 1 .  (A 6) 

Substitution and rearrangement results in 

The matching to the inviscid solution (2.8) provides the boundary conditions 

where 28 is the thickness of the viscous region. Because 6 develops initially by 
diffusion, we take 6 = 0 a t  6 = 0. 

Since a < 1 we can neglect a5 in the right-hand-side term of (A 7). I n  addition, we 
anticipate that the second term of the left-hand side is unimportant for small 6. 
Discarding it,  we obtain 

where 
(A 9) YT = Ygcj 

d0 = @-(l-@ln(l-0) .  

The solution of this equation, subject to the initial conditions (A 8) with S = 0, is 

1 
y = a@[p erfc ( p )  -lexp (-p2)1, (A 11)  

7Cz  

where 
m 5 p = - erfc p = ePx2 dx. 

2 @ ’  7r: 

This solution indicates that y = O ( a f i ) ,  S = O(a@) and the relative magnitude of the 
neglected nonlinear term is O ( T ) .  Consequently, the solution (A 1 1 )  is valid for small 
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T (or 8). For larger values of 0 a numerical solution of (A 7 ) ,  where (A 1 1 )  serves as 
a smoothed initial condition, can be attempted. It is interesting to note that for the 
particular case q = 1 (A 1 )  can be easily reduced to one of Burgers’ type. In  this case, 
v,, = e-2r, and we define the variables q5 and x: 

q5 = (y-vo)ez7, x = eZT--1. (A 13) 

(A 14) 

If q5( = O ( a ) )  is neglected in the last term, the remaining equation can be solved 

Upon substitution in (A 1 )  and using (A 6), we obtain 

YX++YY$ = a2Y$$(1 +$). 

(see e.g. Carrier & Pearson 1976) subject to 

A similar Burgers’ equation (but different boundary condition) governs the viscous 
layer attached to the discontinuity point in nonlinear spin-up from rest problem (see 
Venezian 1970; Weidman 1975: Hyun et al. 1983). 

However, since the filling is completed here in rP < 0.5, which corresponds to 
0 < 0.63, the simple solution (A 1 1 )  seems a fairly accurate reproduction of this viscous 
layer during the entire filling process when q = 1 .  

The foregoing analysis neglects the interaction between the viscous layer and the 
outer wall. Its validity is consequently restricted to 6 1 - R,, which implies q 9 a or 
E 9 H i B ,  where E is the Rossby number. 
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